Denoising Diffusion Probabilistic Models (DDPMs) are emerging in text-to-speech (TTS) synthesis because of their strong capability of generating high-fidelity samples. However, their iterative refinement process in high-dimensional data space results in slow inference speed, which restricts their application in real-time systems. Previous works have explored speeding up by minimizing the number of inference steps but at the cost of sample quality. In this work, to improve the inference speed for DDPM-based TTS model while achieving high sample quality, we propose ResGrad, a lightweight diffusion model which learns to refine the output spectrogram of an existing TTS model (e.g., FastSpeech 2) by predicting the residual between the model output and the corresponding ground-truth speech. ResGrad has several advantages: 1) Compare with other acceleration methods for DDPM which need to synthesize speech from scratch, ResGrad reduces the complexity of task by changing the generation target from ground-truth mel-spectrogram to the residual, resulting into a more lightweight model and thus a smaller real-time factor. 2) ResGrad is employed in the inference process of the existing TTS model in a plug-and-play way, without re-training this model. We verify ResGrad on the single-speaker dataset LJSpeech and two more challenging datasets with multiple speakers (LibriTTS) and high sampling rate (VCTK). Experimental results show that in comparison with other speed-up methods of DDPMs: 1) ResGrad achieves better sample quality with the same inference speed measured by real-time factor; 2) with similar speech quality, ResGrad synthesizes speech faster than baseline methods by more than 10 times. Audio samples are available at https://resgrad1.github.io/.
translated by 谷歌翻译
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (<50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
translated by 谷歌翻译
Knowledge tracing (KT) aims to leverage students' learning histories to estimate their mastery levels on a set of pre-defined skills, based on which the corresponding future performance can be accurately predicted. In practice, a student's learning history comprises answers to sets of massed questions, each known as a session, rather than merely being a sequence of independent answers. Theoretically, within and across these sessions, students' learning dynamics can be very different. Therefore, how to effectively model the dynamics of students' knowledge states within and across the sessions is crucial for handling the KT problem. Most existing KT models treat student's learning records as a single continuing sequence, without capturing the sessional shift of students' knowledge state. To address the above issue, we propose a novel hierarchical transformer model, named HiTSKT, comprises an interaction(-level) encoder to capture the knowledge a student acquires within a session, and a session(-level) encoder to summarise acquired knowledge across the past sessions. To predict an interaction in the current session, a knowledge retriever integrates the summarised past-session knowledge with the previous interactions' information into proper knowledge representations. These representations are then used to compute the student's current knowledge state. Additionally, to model the student's long-term forgetting behaviour across the sessions, a power-law-decay attention mechanism is designed and deployed in the session encoder, allowing it to emphasize more on the recent sessions. Extensive experiments on three public datasets demonstrate that HiTSKT achieves new state-of-the-art performance on all the datasets compared with six state-of-the-art KT models.
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model's robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.
translated by 谷歌翻译
Image and video synthesis has become a blooming topic in computer vision and machine learning communities along with the developments of deep generative models, due to its great academic and application value. Many researchers have been devoted to synthesizing high-fidelity human images as one of the most commonly seen object categories in daily lives, where a large number of studies are performed based on various deep generative models, task settings and applications. Thus, it is necessary to give a comprehensive overview on these variant methods on human image generation. In this paper, we divide human image generation techniques into three paradigms, i.e., data-driven methods, knowledge-guided methods and hybrid methods. For each route, the most representative models and the corresponding variants are presented, where the advantages and characteristics of different methods are summarized in terms of model architectures and input/output requirements. Besides, the main public human image datasets and evaluation metrics in the literature are also summarized. Furthermore, due to the wide application potentials, two typical downstream usages of synthesized human images are covered, i.e., data augmentation for person recognition tasks and virtual try-on for fashion customers. Finally, we discuss the challenges and potential directions of human image generation to shed light on future research.
translated by 谷歌翻译
Few-shot node classification is tasked to provide accurate predictions for nodes from novel classes with only few representative labeled nodes. This problem has drawn tremendous attention for its projection to prevailing real-world applications, such as product categorization for newly added commodity categories on an E-commerce platform with scarce records or diagnoses for rare diseases on a patient similarity graph. To tackle such challenging label scarcity issues in the non-Euclidean graph domain, meta-learning has become a successful and predominant paradigm. More recently, inspired by the development of graph self-supervised learning, transferring pretrained node embeddings for few-shot node classification could be a promising alternative to meta-learning but remains unexposed. In this work, we empirically demonstrate the potential of an alternative framework, \textit{Transductive Linear Probing}, that transfers pretrained node embeddings, which are learned from graph contrastive learning methods. We further extend the setting of few-shot node classification from standard fully supervised to a more realistic self-supervised setting, where meta-learning methods cannot be easily deployed due to the shortage of supervision from training classes. Surprisingly, even without any ground-truth labels, transductive linear probing with self-supervised graph contrastive pretraining can outperform the state-of-the-art fully supervised meta-learning based methods under the same protocol. We hope this work can shed new light on few-shot node classification problems and foster future research on learning from scarcely labeled instances on graphs.
translated by 谷歌翻译
High-dimensional data can often display heterogeneity due to heteroscedastic variance or inhomogeneous covariate effects. Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data. The former is computationally challenging due to the non-smooth nature of the check loss, and the latter is sensitive to heavy-tailed error distributions. In this paper, we propose and study (penalized) robust expectile regression (retire), with a focus on iteratively reweighted $\ell_1$-penalization which reduces the estimation bias from $\ell_1$-penalization and leads to oracle properties. Theoretically, we establish the statistical properties of the retire estimator under two regimes: (i) low-dimensional regime in which $d \ll n$; (ii) high-dimensional regime in which $s\ll n\ll d$ with $s$ denoting the number of significant predictors. In the high-dimensional setting, we carefully characterize the solution path of the iteratively reweighted $\ell_1$-penalized retire estimation, adapted from the local linear approximation algorithm for folded-concave regularization. Under a mild minimum signal strength condition, we show that after as many as $\log(\log d)$ iterations the final iterate enjoys the oracle convergence rate. At each iteration, the weighted $\ell_1$-penalized convex program can be efficiently solved by a semismooth Newton coordinate descent algorithm. Numerical studies demonstrate the competitive performance of the proposed procedure compared with either non-robust or quantile regression based alternatives.
translated by 谷歌翻译
Facial Expression Recognition (FER) in the wild is an extremely challenging task. Recently, some Vision Transformers (ViT) have been explored for FER, but most of them perform inferiorly compared to Convolutional Neural Networks (CNN). This is mainly because the new proposed modules are difficult to converge well from scratch due to lacking inductive bias and easy to focus on the occlusion and noisy areas. TransFER, a representative transformer-based method for FER, alleviates this with multi-branch attention dropping but brings excessive computations. On the contrary, we present two attentive pooling (AP) modules to pool noisy features directly. The AP modules include Attentive Patch Pooling (APP) and Attentive Token Pooling (ATP). They aim to guide the model to emphasize the most discriminative features while reducing the impacts of less relevant features. The proposed APP is employed to select the most informative patches on CNN features, and ATP discards unimportant tokens in ViT. Being simple to implement and without learnable parameters, the APP and ATP intuitively reduce the computational cost while boosting the performance by ONLY pursuing the most discriminative features. Qualitative results demonstrate the motivations and effectiveness of our attentive poolings. Besides, quantitative results on six in-the-wild datasets outperform other state-of-the-art methods.
translated by 谷歌翻译
Generalist models, which are capable of performing diverse multi-modal tasks in a task-agnostic way within a single model, have been explored recently. Being, hopefully, an alternative to approaching general-purpose AI, existing generalist models are still at an early stage, where modality and task coverage is limited. To empower multi-modal task-scaling and speed up this line of research, we release a generalist model learning system, OFASys, built on top of a declarative task interface named multi-modal instruction. At the core of OFASys is the idea of decoupling multi-modal task representations from the underlying model implementations. In OFASys, a task involving multiple modalities can be defined declaratively even with just a single line of code. The system automatically generates task plans from such instructions for training and inference. It also facilitates multi-task training for diverse multi-modal workloads. As a starting point, we provide presets of 7 different modalities and 23 highly-diverse example tasks in OFASys, with which we also develop a first-in-kind, single model, OFA+, that can handle text, image, speech, video, and motion data. The single OFA+ model achieves 95% performance in average with only 16% parameters of 15 task-finetuned models, showcasing the performance reliability of multi-modal task-scaling provided by OFASys. Available at https://github.com/OFA-Sys/OFASys
translated by 谷歌翻译